Study on MHD Viscous Flow over a Stretching Sheet Using DTM-Pade’ Technique

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Transfer on Mhd Viscous Flow over a Stretching Sheet with Prescribed Heat Flux

A steady three-dimensional Magnetohydrodynamic (MHD) boundary layer viscous flow and heat transfer due to a permeable stretching sheet with prescribed surface heat flux is studied in presence of a uniform applied magnetic field transverse to the flow. Using the implicit finite-difference scheme, known as the Keller-box method, the nonlinear ordinary differential equations are solved. The veloci...

متن کامل

Heat transfer in MHD flow of a dusty fluid over a stretching sheet with viscous dissipation

An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer characteristics of a dusty fluid over a flat stretching sheet in the presence of viscous dissipation. The basic equations governing the flow and heat transfer are in the form of partial differential equations, the same have been reduced to a set of non-linear ordinary differential equations b...

متن کامل

Dirichlet series and approximate analytical solutions of MHD flow over a linearly stretching ‎sheet

The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow due to a stretching sheet caused by boundary layer of an incompressible viscous flow. The governing partial differential equations of momentum equations are reduced into a nonlinear ordinary differential equation (NODE) by using a classical similarity transformation along with appropriate boundary cond...

متن کامل

MHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet

In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Modern Mechanical Engineering

سال: 2012

ISSN: 2164-0165,2164-0181

DOI: 10.4236/mme.2012.24016